An adaptive homotopy approach for non-selfadjoint eigenvalue problems

نویسندگان

  • Carsten Carstensen
  • Joscha Gedicke
  • Volker Mehrmann
  • Agnieszka Miedlar
چکیده

This paper presents adaptive algorithms for eigenvalue problems associated with non-selfadjoint partial differential operators. The basis for the developed algorithms is a homotopy method which departs from a wellunderstood selfadjoint problem. Apart from the adaptive grid refinement, the progress of the homotopy as well as the solution of the iterative method are adapted to balance the contributions of the different error sources. The first algorithm balances the homotopy, discretization and approximation errors with respect to a fixed stepsize τ in the homotopy. The second algorithm combines the adaptive stepsize control for the homotopy with an adaptation in space that ensures an error below a fixed tolerance ε. The outcome of this paper leads to the third algorithm which allows the complete adaptivity in space, homotopy stepsize as well as the iterative algebraic eigenvalue solver. All three algorithms are compared in numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematik-Bericht 2010/5 An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators

For bounded linear operators A,B on a Hilbert space H we show the validity of the estimate ∑ λ∈σd(B) dist(λ,Num(A)) ≤ ‖B −A‖pSp , p ≥ 1, and apply it to recover and improve some Lieb-Thirring type inequalities for non-selfadjoint Jacobi and Schrödinger operators.

متن کامل

A Note on the Homotopy Method for Linear Algebraic Eigenvalue Problems

Recently the homotopy method has been applied to solve linear algebraic eigenvalue problems. On the basis of theoretical advantages and practical experiments, the method has been suggested as a serious alternative to EISPACK for finding all isolated eigenpairs of large, sparse linear algebraic eigenvalue problems on SIMD machines. This note offers a simpler proof than Li and Sauer’s of the exis...

متن کامل

Eigenvalue Computations for Regular Matrix Sturm - Liouville Problems ∗

An algorithm is presented for computing eigenvalues of regular selfadjoint Sturm-Liouville (SL) problems with matrix coefficients and separated boundary conditions.

متن کامل

Non-selfadjoint matrix Sturm-Liouville operators with eigenvalue-dependent boundary conditions

In this paper we investigate discrete spectrum of the non-selfadjoint matrix Sturm-Liouville operator L generated in L (R+, S) by the differential expression ` (y) = −y +Q (x) y , x ∈ R+ : [0,∞) , and the boundary condition y′ (0)− ( β0 + β1λ+ β2λ 2 ) y (0) = 0 where Q is a non-selfadjoint matrix valued function. Also using the uniqueness theorem of analytic functions we prove that L has a fini...

متن کامل

Operator Theoretic Methods for the Eigenvalue Counting Function in Spectral Gaps

Using the notion of spectral flow, we suggest a simple approach to various asymptotic problems involving eigenvalues in the gaps of the essential spectrum of selfadjoint operators. Our approach uses some elements of the spectral shift function theory. Using this approach, we provide generalisations and streamlined proofs of two results in this area already existing in the literature. We also gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2011